

Review of V50 Values for Armour Materials

Dr Bill Humphries

www.humphries-scientific.com

Purpose

- To provide a comparison of V50 values for various material
- To provide data that can be used as a benchmark for comparison with the performance of new materials
- Review empirical relationships between V50 and material and projectile properties

Data Analysis

Tobin from the UK Department of Defence appears to have been the first to publish an empirical relationship between V50 and areal density of the armour (Tobin, L. (1985) A Comparison of the levels of protection afforded by various fabrications of Kevlar and Nylon Helmets Technical Memorandum SCRDE/85/8, Part 1 and SCRDE/85/10, Part 2). He found for a given armour material:

$$V50 = k * AD^{0.5}$$
 (1)

Where k is a constant determined by the armour material properties and AD is the areal density of the material. Many subsequent studies found similar relationships.

Jacobs and van Dingenen (Ballistic protection mechanisms in personal armour. Journal of Material Science 36 (2001) 3137 – 31) took this a step further as they wanted to find a relationship which allowed the size of different projectiles to be taken into account. They found from a series of tests that:

$$\frac{E}{P_a} = c * AD \tag{2}$$

Where E is projectile energy absorbed, P_a is the projectile cross-sectional area and c is a material constant.

Data Analysis (continued)

This is a simple extension of equation 1 as equation 2 can be re-written as:

$$\frac{1}{2}^{m_p}/p_a * V50^2 = c * AD$$
(3)

Where m_p is the mass of the projectile. Equation 3 can be re-written as:

$$V50 = (2c * \frac{AD}{AD_p})^{0.5}$$
(4)

Where AD_p is the areal density of the projectile i.e. the mass of the projectile divided by the projectile's crosssectional area. Therefore what Jacobs and van Dingenen have introduced is the concept that V50 is the same for different projectiles which have the same mass per unit area.

Data Analysis (continued)

Cuniff (Dimensionless Parameters for Optimization of Textile-Based Body Armor Systems. Proceeding of the 18th International Symposium on Ballistics, San Antonio, TX, Nov 1999.) wanted to be able to compare not only different projectiles but also different armour materials and based on a dimensional analysis approach he introduced a parameter, a dimensionless V50 velocity, defined as the V50 velocity normalized by the cube root of the product of specific work to break the fibre and the acoustic wave speed in the fibre. Therefore he suggested and verified that the following relationship was valid:

$$\frac{V50}{U^{1/3}} = f\left(\frac{AD}{AD_P}\right) \tag{5}$$

Where U is the product of fibre toughness and strain wave velocity. The function was found to be approximately a square root function as expected from the previous equations.

V50 Values for High Performance Fabrics

Chart opposite shows data extracted from literature for V50 as a function of fabric areal density.

Data is for 1.1g FSP and for Dyneema, Kevlar and Twaron fabrics.

Jacobs and van Dingenen data is extracted using equation (2), Cunniff data using equation (3) all other data is directly from experiments with 1.1g FSP

V50 for Composite Materials

Chart Opposite shows data extracted for V50 for composite materials.

Data is for 1.1g FSP and Dyneema, Kevlar, Spectra, Glass and Basalt reinforcing Fibres

Jacobs and van Dingenen data is extracted using equation (2), Cunniff data using equation (3) all other data is directly from experiments with 1.1g FSP

V50 for Metals

Chart Opposite shows data extracted for V50 for metals

Data is for 1.1g FSP and for titanium, steel and aluminium.

All data is based on experiments with 1.1g FSP.

Comparison Fabric, Composites and Metals

Summary Information in Terms of Energy Absorbed

Conclusion

For FSPs

- There is a consistent relationship between V50 and areal density for Kevlar, Twaron and Dyneema with surprisingly little scatter considering the data is sourced from a number of different organisations
- Kevlar and Dyneema composites perform better than glass and basalt composites
- At least up to areal densities of 60kg/m² composites outperform metals

Data References

Ref no	Title	Authors and Affiliation	Reference	Materials	Projectile
1	Fragmentation Resistance of Fiber Reinforced	Merriman, E.A., and Miner, L.H., E. I. DuPont	10th International Ballistics Symposium of the American	Composites	1.1g FSP (0.22 Caliber)
	Ballistic Structures	de Nemours and Co. Inc	Defense Preparedness Association in San Diego,	4000 to 35,000 gsm	
			California.1987		
2	A Model for HDPE Based Lightweight Add-on	Van Gorp, E.H.M., van der Loo, I.L.H., and	Ballistics '93 14th International Symposium on Ballistics (1993)	Dyneema Unidirectional Fabric (UD 66)	1.1g FSP (0.22 Caliber)
	Armour	van Dingenen			
3	Dimensionless Parameters for Optimization	Philip M. Cunniff	Proceeding of the 18th International Symposium on Ballistics,	Fabrics and Composites	0.12, 0.26, 1.0, 4.1, and 8.2g
	of Textile-Based Body Armor Systems	U.S. Army Soldier and Biological Chemical	San Antonio, TX, Nov 1999	270 – 25000gsm	steel or tungsten
		Command Soldier Systems Center, Natick			
		Natick, MA 01760-5019			
4	Ballistic protection mechanisms in personal	M. J. N. Jacobs, J. L. J. Van Dingenen	Journal of Material Science 36 (2001) 3137 – 31	Dyneema Fabrics and Composites	0.237, 0.486, 1.1, 2.8, 5.3 and
	armour	DSM High Performance Fibers			13.4g FSP
				UD Dyneema 2000 to 20,000 gsm	
5	Teijin Aramid	Rene Lohmann	Techtextile Middle East, Dubai February 2014	Twaron Fabric	1.1g FSP
		Teijin Aramid GmbH, Wuppertal, Germany		СТ608, СТ612, СТ707, СТ714	
				2500 – 5000 gsm	
6	Ballistic Impact Properties of Fibre Reinforced	Westin, J	Master's Thesis for Swedish Defence Research Agency	Composites	1.1g FSP
	Composite Structures		2011	5000 to 30000 gsm	
7	Ballistic Properties of Polyethylene	Dimko Dimeski, Gordana Bogoeva-Gaceva,	Zbornik radova Tehnološkog fakulteta u Leskovcu ISSN 0352-	Composites	1.5g FSP
	Composites Based on Bidirectional and	Vineta Srebrenkoska1	6542 UDK 004/.007+3+5+6(05)	Plain woven Dyneema and Dyneema	
	Unidirectional Fibers	1Faculty of Technology, "Goce Delcev"	20 (2011), 184 – 191 UDK 677.494.7:623.5:620.1 Originalni	unidirectional tape 3000 to 9000gsm	
		University, Stip, FYRM	naučni rad		
		2Faculty of Technology and Metallurgy "Ss.			
		Cyril and Methodius" University, Skopje,			
		FYRM			
8	Ballistic Evaluation of Magnesium Alloy	by Tyrone L. Jones, Richard D. DeLorme,	ARL-TR-4077 April 2007	Magnesium, Aluminium, Steel	1.1, 13.4 and 53.8g FSPs
	AZ31B	Matthew S. Burkins, and William A. Gooch.,		13000 to 135,000 gsm	
		Us Army Research Laboratory			
10	Ballistic Performance of Thin Titanium Plates	Matthew Burkins	23 rd International Symposium on Ballistics. Tarragona, Spain	Titanium Plate 5,000 to 28,000 gsm	1.1g FSP
		U.S. Army Research Laboratory,	16-20 April 2007		
11	Ballistic Testing of Australian Bisalloy Steel	W.A. Gooch1, D.D. Showalter, M.S. Burkins,	23 rd International Symposium on Ballistics. Tarragona, Spain	Steel Plate	13.4 and 53.8g FSP
	for Armor Applications	V. Thorn, S.J. Cimpoeru and R. Barnett., US,	16-20 April 2007	80,000 to 160,000gsm	
		Army Research laboratory and DSTO			
12	"High Strength Fabrics for Combat Clothing"	A Pierlot	Future Land Force Conference 2014	Twaron, Kevlar and Spectra Fabrics	1.1g FSP

Thank You

Contact Details Dr Bill Humphries Humphries Scientific www.humphries-scientific.com